2FHL: The Second Catalog of Hard Fermi-LAT Sources

Marco Ajello, Alberto Domínguez, Jamie Cohen, Sara Cutini, Dario Gasparrini on behalf of the Fermi-LAT Collaboration

Accepted on ApJS: arXiv:1508.04449

Fermi-LAT Catalogs

*n*FGL Catalogs detect and characterize sources in the ~0.1-100 GeV energy range *n*FHL Catalogs explore the higher-energy sky

Fermi-LAT Catalogs

*n*FGL Catalogs detect and characterize sources in the 0.1-100 GeV energy range *n*FHL Catalogs explore the higher-energy sky

Why 2FHL? Improvement delivered by Pass 8 enables study of the EBL, EGB, Galactic plane, etc, and connects well to the TeV world

Count Map

80 months of P8 data (50 GeV – 2 TeV)

61,000 photons E > 50 GeV 22,100 photons E > 100 GeV 2,000 photons E > 500 GeV

~1.5 photon every deg²

Analysis Details

Analysis details

- 50 GeV 2 TeV
- 80 months of data (till April 2015)
- Pass 8 (source)
- Unbinned likelihood

Detections

- 360 sources:
 - 75% blazars, 11% Galactic sources, 14% unassociated
- 78 detected by IACTs (TeVCat)
- 230 detected in 1FHL
- 303 detected in 3FGL
- 57 brand new sources (not 1FHL/3FGL)

Median localization accuracy is 1.7 arcmin (68%)!

Bottom line: plenty of sources for TeV telescopes

 10^{-10}

 10^{-1}

 10^{0}

 $u F_{
u} \left[\mathrm{erg} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1} \right]$

Spectral Energy Distributions

Available at: http://fermi.gsfc.nasa.gov/ssc/data/access/ lat/2FHL/

Galactic Sources

103 sources at |b|<10°

- 42 blazars, 39 Galactic objects, 13 unassociated and 9 Dark Acc.
- PWNe/SNRs represent 87% of the Galactic population
- Galactic sources are very hard
 - Median photon index of ~2, while for blazars is ~3
- Half of the unassociated sources are hard and thus (likely) Galactic

New Extended Sources

All new sources are significantly detected in 2FHL (TS>75)

- They are hard, and harder than the Galactic diffuse emission
- They are associated to known (3) PWNe and (2) SNRs
- Detailed characterization will be reported in future papers

2FHL Name	$l \; [\deg]$	$b [\deg]$	TS	TS_{ext}	TS_{2pts}	F_{50}	ΔF_{50}	Г	$\Delta\Gamma$	Association	Class	Radius [deg]
J0431.2+5553e	150.384	5.216	87.9	83.4	26.2	11.70	2.11	1.66	0.20	G 150.3+4.5	snr	1.27
J1112.4 - 6059e	291.222	-0.388	80.9	68.3	22.5	12.80	2.36	2.15	0.28	PSR J1112-6103	pwn	0.53
J1355.2 - 6430e	309.730	-2.484	82.3	31.8	12.9	9.59	1.95	1.56	0.22	PSR J1357-6429	pwn	0.57
J1419.2 - 6048e	313.432	0.260	109.3	49.1	15.6	17.60	2.80	1.87	0.19	PSR J1420-6048	pwn	0.36
J1443.2 - 6221e	315.505	-2.239	75.6	29.9	19.2	7.23	1.70	2.07	0.30	SNR G315.4-2.3	snr	0.27

New SNR (G150.3+4.5) discovered by Gao & Han 2014

New Extended Sources

All new sources are significantly detected in 2FHL (TS>75)

- They are hard, and harder than the Galactic diffuse emission
- They are associated to known (3) PWNe and (2) SNRs
- Detailed characterization will be reported in future papers

2FHL Name	$l [{ m deg}]$	$b [\deg]$	TS	TS_{ext}	TS_{2pts}	F_{50}	ΔF_{50}	Г	$\Delta\Gamma$	Association	Class	Radius [deg]
J0431.2+5553e	150.384	5.216	87.9	83.4	26.2	11.70	2.11	1.66	0.20	G 150.3+4.5	snr	1.27
J1112.4 - 6059e	291.222	-0.388	80.9	68.3	22.5	12.80	2.36	2.15	0.28	PSR J1112-6103	pwn	0.53
J1355.2 - 6430e	309.730	-2.484	82.3	31.8	12.9	9.59	1.95	1.56	0.22	PSR J1357-6429	pwn	0.57
J1419.2 - 6048e	313.432	0.260	109.3	49.1	15.6	17.60	2.80	1.87	0.19	PSR J1420-6048	pwn	0.36
J1443.2 - 6221e	315.505	-2.239	75.6	29.9	19.2	7.23	1.70	2.07	0.30	SNR G315.4-2.3	snr	0.27

New SNR (G150.3+4.5) discovered by Gao & Han 2014

Comparison with the H.E.S.S. G.P. Survey

Significance Map

Fermi-LAT >50 GeV Count Map (adaptively smoothed)

Comparison with the H.E.S.S. G.P. Survey

- H.E.S.S. reported the detection of 69 sources reaching a sensitivity of ~2% of the >1 TeV Crab Nebula flux
- The LAT detects (in 2FHL) 36 sources in the same region reaching an average sensitivity of 3-4% of the Crab Nebula flux
- The LAT detects an equal number of PWNe/SNRs while for H.E.S.S they are in a 1.5:1 ratio
- Within the H.E.S.S. footprint there are:
 - 7 unassociated sources
 - 6 objects coincident with dark accelerators

Example of a dark accelerator

Blazars

- Blazar-like objects constitute >80% of the 2FHL Catalog
 - Detected up to z~2
 - Most of them are BL Lacs, only 10 FSRQs
 - Different population than 3FGL

Blazar Spectra

- Being sensitive over ~4 decades in energy, the LAT resolves the high-energy peak
 - Sources become softer at higher energies
 - Sources becomes softer at high redshift

Photon index distribution vs redshift

Blazar Spectra

- Being sensitive over ~4 decades in energy, the LAT resolves the high-energy peak
 - Sources become softer at higher energies
 - Sources becomes softer at high redshift

Extragalactic Background Light

- Spectral breaks between the VHE and Fermi band have been used as diagnostic for/against the EBL (Essey&Kusenko, Sanchez+13,etc)
 - spectral flattening at high redshift has been interpreted as sign of interesting physics

Extragalactic Background Light

 Dependence of spectral breaks between the 2FHL and 3FGL bands with redshift can be explained as produced by the EBL alone

Simulations of SSC spectra absorbed by the EBL

Domínguez & Ajello 2015

Summary

- 2FHL opens a new window on the high-energy sky
 - 360 sources detected between 50 GeV and 2 TeV
 - 75% blazars, 14% Galactic and 11 % unassociated
 - only 25% detected in TeVCat

– Galactic science:

- all display hard spectra, 87 % are PWNe/SNRs
- 5 new extended sources and ~25 unassociated sources
- good match to the H.E.S.S. Galactic plane survey

– Extragalactic science:

- >80% of 2FHL sources are blazars (BL Lacs), detected up to z~2
- Clear signs of EBL attenuation (and nothing else)
- Results on the EGB in Mattia's Talk

Best of All? Sensitivity increases linearly with time, so stay tuned!

End

Extragalactic Background Light: 1

- Evidence for strong softening of the 2FHL spectra with redshift
 - Most likely due to EBL
- Several photons detected beyond the horizon
 - Very important to constrain the EBL

Variability

55900 MJD

56500

55300

Difficult to study variability with few photons

56500

Yet, 7 sources (all blazars) are found to be variable

Example of a Dark Accelerator: 2

2FHL Sources detected at TeV energies

General Properties

- Galactic sources have much harder spectra than extragalactic ones
 - Median spectral index Γ =2 vs Γ =3
 - The EBL might be the culprit
 - Spectral index can be used to distinguish Galactic objects among the unassociated sources

Search for Extended Sources

- We used the extended templates of previously detected sources:
 - 25 from 3FGL + W41
 - Of them 6 sources were not significantly detected:
 - SMC, S 147, Cen-A (lobes), W 44, HB 21, Cygnus loop
- Blind search for new sources:
 - 72 ROIs of 10°, devoid of sources, centered at b=0
 - Iteratively add disk source at most significant TS peak
 - Fit and choose extended source if TS_{ext}>16
- It resulted in the detection of 5 new extended sources

Spectral Energy Distributions

Extragalactic Gamma-ray Background

Models predict that the >50 GeV EGB is produced by blazars

Extragalactic Gamma-ray Background

- Perform simulations of the > 50 GeV sky to determine the detection efficiency
 - i.e. the probability to detect a source in 2FHL as a function of flux

Photon Fluctuation Analysis

 Fluctuations of the background depend also on the properties of the unresolved source population

 α = power law index below the break

Photon Fluctuation Analysis

 Fluctuations of the background depend also on the properties of the unresolved source population

 The 2FHL LogN-LogS resolves 96(+15/-18)% of the IGRB

Nearly all the IGRB is produced by BL Lacs

Count Map

80 months of P8 data (50 GeV – 2 TeV)

61,000 photons E > 50 GeV 22,100 photons E > 100 GeV 2,000 photons E > 500 GeV

~1.5 photon every deg²

Extragalactic Background Light: 2

- Measuring the intrinsic spectral index: fitting an EBL-absorbed power law model to 129 2FHL blazars with a redshift
 - the intrinsic spectra are much harder than the observed ones

